Computer Architecture

Rechner-Architektur

Elektron. Rechenanl. 14 (1972), H. 4, S, 154—159
Manuskripteingang: 12. 5. 1972

In this paper overall design principles of computer architecture
are considered. The concepr of architecture is defined and con-
trasted with the implementation and realization of the com-
puter. The realm, documeniation and language of the architec-
ture are considered briefly. Subsequently the principle of con-
sistency and the derived principles of orthogonality, propriety
and generality are discussed as they pertain to the quality of
a design. Since the concept of architecture is not limited to
computers, examples from other machines are also used.

In dieser Arbeit werden die Gesamrentwurfsgrundsdize der
Rechner-Architektur betrachter. Der Begriff der Architektur
wird definiert und der Implementierung und Realisierung von
Rechenanlagen gegeniibergestellt. Der Bereich der Architektur,
ihre Dokumentation und ihre Sprache werden kurz betrachtet.
Anschliefend werden der Grundsatz der Konsistenz und die da-
von abgeleiteten Grundsdtze der Orrthogonalitit, der Ange-
brachtheit und der Allgemeinheit diskutiert und wie sie zur
Qualitit eines Entwurfes beitragen. Da der Begriff der Archi-
tektur nicht auf Rechenanlagen beschrinkt ist, werden auch
Beispiele aus anderen Gebieten verwendet.

Three steps of design

In computer design three levels can be distinguished: archi-
tecture, implementation and realisation; for the first of them,
the following working definition is given: The architecture of
q system can be defined as the functional appearance of the
system to the user, its phenomenology.

Although the term architecture was introduced only ten years
ago in computer technology (Buchholz), the concept of archi-
tecture is as old as the use of mechanisms by man. When a
child is taught to look at a clock, it is taught the architecture
of the clock. It is told to observe the position of the short and
the long hand and to relate these to the hours and the minutes.
Once it can distinguish the architecture from the visual
appearance, it can tell time as easily from a wrist watch as
from the clock on the the church tower.

The inner structure of a system is not considered by the archi-
tecture: we do not need to know what makes the clock tick,
to know what time it is. This inner structure, considered from
a logical point of view, will be called the implementation, and
its physical embodyment the realisation.

Implementation and realisation are not the subject of this
paper. However, since they complement the architecture, their
definition, realm, documentation, aim and procedure will be
discussed briefly at the outset. The corresponding characteris-
tics of the architecture will subsequently be discussed., with
the major emphasis on design principles.

154

1972 Heft 4 Elektronische Rechenanlagen

D oo

von G. A. BLAAUW, Twente University of Technology,
Enschede, The Netherlands

Implementation

The implementarion is the logical structure which performs
the architecture. Where the architecture tells whar happens,
the implementation describes how it is made to happen. For
the above mentioned clock, for instance, powering could be
achieved through water action, springs, weights, atmospheric
pressure, electric current, or body movement, while accuracy
could be obtained through a balance, pendulum, crystal,
tuning fork, or the period of the electric net.

For the computer, the implementation possibilities are the
choices in space and time expressed by the adjectives: serial
and parallel; consecutive and anticipatory; fixed and adap-
tive; polling and interrupting; stored and decoded: and
private and shared. The list illustrates the large repertoire of
options at the disposal of the implementer. The repertoire
has a timeless quality; most alternatives are valid for every
computer generation.

Designing to a given architecture is not a real limitation to
the implementer. The watchmaker does not feel frustrated by
the conventions of the dial. On the contrary, the options
mentioned above show that the realm of his design contains
many degrees of freedom. Similarly the logical designer need
not feel constrained by the architecture. His more natural
limitation is complexity, which bounds the extensions in
space and time and results in the ultimate expense of thrift
and slowness of haste. An example of the first is the minimal
micro-coded machine, which requires too much storage space
and time. An example of the latter is the over-ambitious
fook ahead design which guesses too boldly and hence wastes
time in correcting its misjudgments.

The result of the implementation, the logical design, is tradi-
tionally shown as a series of block diagrams. These blocks
represent in effect a series of statements. Actually, a direct
presentation of thesestatementsismoresuitableand, although,
less familiar, more easily understood. The Harvard Mark I'V
was to large degree designed and described by such state-
ments, as has been the case with several subsequent develop-
ments,

The aim of the implementer is an optimal, that is minimal,
cost-performance ratio for a given application and perfor-
mance range. An indication of the quality of the design is the
scope of the cost and performance considerations. Rather
than local optimization against a given instruction mix all
ramifications of cost and performance should be taken into
account early during the design. They include the cost of
items like education, maintenance and operating environ-
ment and their effect upon design decisions, such as error
neglection, detection, or correction.




|
|
;
i

Realisation

The physical structure, which embodies the logical design,
will be called the realisation. It is often considered part of the
implementation. Here, however, the ‘whick’ and ‘where” of
component selection, allocation, placement and connection
will be considered separate from the “how’ of the logical
structure.

An example of machines with very similar implementations,
but quite different realisations, are the IBM 709 (1959) and
7090 {1960). The latter is basically a transistorised version
of the former.

The logical design can make significant use of computer
aided design, often in the form of a conversational system
(Blaauw, 1971). The most prominent tool of the realisation
is design automation, usually in batch processing form. Here
the attention of the designer has shifted from the design
itself, to the tools which he uses in designing. Design auto-
mation can successfully complete the task of component
placement and wire routing, and promises to be increasingly
effective as better algorithms are developed.

A good realisation should be manufacturable and maintain-
able. Its emphasis is therefore upon achieving a proper package
and using it to its best advantage.

Design boundaries

The architectural definition and the logical design each act
as an interface. They subdivide the overall design problem
and permit a simultaneous effort on all fronts. This procedure
of divide and conquer is extended within each design area.

Setting up fences between architecture, implementation and
realisation does not prevent the designers from looking from
one area to the other. In fact: ““good fences make good
neighbours’’. Each area can influence the others significantly.
However, recognising clearly how one area affects another
should lead to greater freedom of design for all concerned.

The policy of dividing through interfaces has been a major
key to conquering the hardware design process and making
it predictable in time and result. For software design, the
ability to define proper interfaces is equally important,

An every day example of a division by standard interface is
the electric plug and outlet connection. It should be noted
that neither plug nor outlet constitutes the interface, but the
electrical and mechanical definition, to which both adhere.
The example also points to the gain in modularity and its
attendant freedom of configuration and future development.
This interface has a parallel in the input/output interface of
computer systems. Less public, and hence less standard, are
the interfaces in the central unit, and the connections to
storage and channels.

Realm of architecture

Each time an interface is established its definition constitutes
an architecture. It therefore is necessary to ascertain with
what reference the term archifecture is used. For computers,
it may, for instance, apply to an operating system, a pro-
gramming language, the machine language, the microcode
language, or the specification of a storage unit. To avoid
confusion, the term is used here only to refer to the machine
language.

In the definition of architecture its realm was restricted to
the functional appearance, rather than the visual appearance.
The covers and colors of the industrial design are not part of

the machine architecture, nor are the cost/performance of
the implementation, nor the manufacturability and main-
tainability of the realisation, even though the user is certainly
aware of these.

There are of course many borderline cases. A typical example
is the behaviour of the systern in the presence of a component
fault. The source of the malfunction is the realisation. The
user, however, must be made aware of this via the architec-
wre, for instance, through a program interruption. Further,
remedial action may be necessary via diagnostic operations
specified in the machine language. It is academic to determine
the formal boundary of the architecture in a case like this.
Instead, the architectural documentation should state clearly
in each case where the boundaries of the architecture are
drawn. As an example, the operation ‘Diagnose’ of System
/360 was defined alike for all implementations in its format,
while its diagnostic action was declared to be implementation-
dependent.

Tt is essential that the boundaries drawn around the architec-
ture are realistic. Eventually, as will be shown, it is the user,
not the designer, who determines the limits of the architecture.

Documentation of architecture

There always is an architecture, whether it is defined iun ad-
vance —as with modern computers—or found out after the
fact—as with many early machines. For architecture is de-
termined by behaviour, not by words. Therefore, the term
architecture, which rightly implies the notion of the arch, or
prime, structure, should not be understood as the vague
overall idea. Rather, the product of the computer architect,
the principle of operations manual, should contain all detail
which the user can know, and sooner or later is bound to
know. For, even if a programmer may be forgiving, his pro-
grams are merciless in exposing every detail.

As an illustration, consider the many details which the public
gets to know about an elevator system. Very quickly one
becomes aware whether multiple elevator banks are coupled
in their control, to what extent calls are remembered, when
the direction of motion is changed. what governs the closing
of doors, and what happens upon overload.

A computer example is provided by the IBM 1401 (1960).
Its manual only mentioned the permissable operations. How-
ever, the unmentioned functions, as for instance the actions
which resulted from the spare operation codes, were soon
found out, and some proved to be very convenient. As a con-
sequence, in emulating the 1401, an addendum to the manual
of about a hundred items had to be included in the design,
since this in effect was part of the architecture. In the IBM
System /360 (1964) this problem was recognised in advance
(AmdakD. A mere statement against using spare codes was
felt to be insufficient. Hence the architecture specified a pro-
gram interruption upon the use of these spares. This so-called
policing is an effective means of safeguarding the architectural
intention.

The necessity for a complete documentation is not only
important to the user. The builder, the designer of the
implementation, also must know how every detail is to be
treated. Many seemingly small architectural requirements
may greatly affect the implementation. Ignoring these details
early in the design may involve disproportionate large costs
as the design nears completion.

In System /360 it was originally overlooked that, in conflict
with the specification, the last adapter on an input/output
channel needed to be switched on whenever the channel was

Elektronische Rechenanlagen 1972 Heft 4 158




used. This restriction arose out of the definition of the logical
zero for the interconnecting circuits. On paper the statement
may appear small. in a functioning reality the nuisance is
major. Remedying this mistake was very costly, as it had to
be done when the system was already in the feld.

Specification language

A proper definition should be extensively verified by simula-
tion. This emphasizes the importance of the language used
to describe the architecture. The use of written English has
been conventional and is indispensable. Its main advantage
is the large audience which it reaches, including, besides the
immediately involved system programmer and logical de-
signer, the less immediately, but not less vitally, involved
people in education, maintenance machine operation, sales
and management.

However, written English, with its ease of expression lacks
the rigor to control. It must be redundant to be understood,
and in fact, to be believed. If, for instance, the architecture
specifies that the sign of a product is determined by the signs
of muitiplier and multiplicand, the experienced manual reader
immediately raises the question of the sign of the product of
zero and a negative number. To forestall such questions, a
written manual soon becomes abundant in words and
stylized in exrression, using terms in carefully defined senses.
Thus it comes to resemble the carefully crafted wording of
guarantee statements, contracts and laws.

Because of these difficulties a more rigorous irredundant
algorithmic language, such as APL (Jverson), is desirable.
An algorithmic description has its own disadvantages, such
as the unfamiliarity of the symbols and the catastrophic effect
of each error. It therefore is desirable to use both methods
side by side. Possible misconceptions in the text can be
eliminated by the expressions, while the expressions in turn
are explained by the text. Each description, however, should
be complete in itself. This aids in answering questions about
the architecture. In turn, the process of making the algo-
rithmic description poses many useful questions to the
architect.

To the implementer an algorithmic description of the archi-
tecture is extremely helpful in assuring the correctness of his
design. The process of logical design can be considered as a
translation from the language of the architecture into the
language of the implementation staterents. When this proc-
ess is sufficiently controlled, the equivalence of the imple-
mentation and the architecture can to a large degree be
ensured. Both the design process and the ultimate implemen-
tation may well reflect this desire for an early assurance of
correctness.

A classical example of an algorithmic machine description is
the APL description of System/360 (Falkoff). The description
was completed concurrent with the system development and
not actually used by the designers. Nevertheless, it showed,
that a complex system can be described in all its details by a
programming language.

Quality of architecture

Good architecture is consistent. That is, with a partial knowl-
edge of the system the remainder of the system can be pre-
dicted. For example, the mere decision to incorporate a
square root operation in an instruction list almost fully de-
fines the operation. The data and instruction formats should

156

1972 Heft 4 Elektronische Rechenanlagen

be the same as for other arithmetic operations. Rounding,
precision and significance should be handled as with other
results. Even taking the square root of a negative number
should yield a result similar to other exception cases, such as
division by zero. An example of lack of consistency can be
found in the Hollerith punched card code. Here knowledge
of the codes for the letters A through R leads one to expect an
S where the slash (/) is found.

In the design of Sysiem/360 the floating point operation
‘halve’ was added at a late moment. Because of implementa-
tion problems it was felt necessary to omit the post-normalisa-
tion. This lack of consistency with the other floating point
operations made the function virtually useless. Soon after
the machine was in use the design had to be corrected at this
point,

Consistency is more frequently used than mentioned in hu-
man thinking. It tells us not to link what is independent, not
10 introduce what is immaterial, and not to restrict what is
inherent, thus leading to orthogonality, propriety and gener-
ality. Itisstimulatingand self-teaching, because it confirms and
encourages our expectation. Thus it provides a solution to
the conflict between ease of use and ease of learning. Ease of
learning requires & simple architecture, as with fixed point
arithmetic; ease of use a more complex one, as with floating
point arithmetic. By making one a subset of the other and both
part of a consistent design, the user’s comprehension of the
architecture can grow naturally. Nevertheless, what is really
consistent is not always evident. Proper human engineering,
including observation and experiment, can be applied here
with much profit.

Design principles

From the broad principle of consistency a number of other
principles can be derived. The three main design principles
to be discussed here, from which others in turn can be derived,
are orthogonality, propriety and generality.

Orthogonality

The principie of keeping independent functions separate in
their specification is called orthogonaliry. This term is bor-
rowed from mathematics, where it denotes algebraic func-
tions, which do not affect each other. Thus for a clock a set
of functions might be:

a. visibility of the time in the dark, the lighted dial,

b. signaling at a preset time, the alarm, and

c. repeated signaling at intervals of several minutes, the
slumber alarm.

Clearly functions a. and b. are independent of one another,
while there is no point to function c. if b. is not present.
Functions a. and c. are also independent and the principle of
orthogonality would be violated, if the slumber alarm could
only operate with lighted dial. Seeing the dial at night has
nothing to do with wanting to rise at a slow pace.

In a program, the criterion of a decision is independent of
the arrangement of the program in main- and sub-routines.
Orthogonality is therefore violated, if ‘branch on plus’ is
present, while ‘branch on not-plus’ is not available, as was
the case in the Whirlwind (1950), and in similar ways in later
machines, like the IBM 1401.

Orthogonality does not concern the absence or presence of
a function. It may be entirely proper for a manufacturer to




offer a package deal, which consists of a clock with lighted
dial and slumber alarm. In fact, this may be consistent, since
a certain level of refinement at one point makes one anticipate
refinement at other points too. What is required by orthogo-
nality, is that independent functions, if provided. be invoked
independently in use.

The IBM 7030. the Streich computer (1960) (Buchholz),
included three flag bits in the floating point format. These
bits were logical variables tied to numeric guantities. This
‘unequal yoke proved unsausfactory. Arithmetic was
burdened with concern about flags, requiring ‘load with
flag’ next to ‘load’, while the flag logic could be performed
much better in separate arrays by the regular logical opera-
tions.

Symmetry

The orthogonality of branch criterion and branch direction is
secured in most modern computers by a set of symmetric
branch conditions. Thus, orthogonality leads to symmetry,
whenever direction is an independent option. If the direction
of travel of a locomotive is recognised as being independent
of its ability to provide traction, a symmetric design results.
The implementation of these functions may however favor
an asymmetric design, as is clear from the steam locomotive.

In computers symmetry as a rule is not difficult to implement.
However, a complete set of options proliferates cperation
codes and may require too much space in the machine for-
mats. The symmetric branch operations require hardly any
added logical circuits. The added operation codes, on the
other hand, may not be readily available. Thus, in computers
a lack of orthogonality results rather from the desire to avoid
proliferation, than from the limitations of the implementation.
As is true for all principles, symmetry should not be made a
goal in itself. The Stretch computer, which as the name in-
dicates deliberately tried to stretch computer technology,
provided all 16 connective functions of two binary variables.
The symmetry of this set is apparent to every logician. The
average user, however, is satisfied with the ‘and’, ‘or and
‘exclusive-or’ of propositional statements. Although this set
is not much cheaper, it requires far fewer operation codes,
which explains why only these connectives are found in
System/360.

Propriety

Orthogonality is desirable, since the linking of independent
functions introduces a constraint which is not proper to the
functions as such. Propriety, that is the need for a function
or feature to be proper to the essential requirements of the
system, is in itself a major principle, which follows from con-
sistency. Its opposite is extraneousness, the introduction of
something strange to the purpose to be served. A typical
example is the gear shift of a car, which also illustrates the
main source of extraneousness: the implementation. Shifting
gears is not proper to driving. 1t is required because of the
limited power range of the piston engine.

Similarly, it may not be allowed to turn the hands of a clock
backwards. Again this rule is due to the implementation of
the clock and of no benefit to the user. In fact, many modern
clocks permit time to be adjusted in both directions.

An example of extraneousness in computers is the sign of
zero in l-complement notation and in absolute-value-and-
sign notation. In mathematics zero has no sign. The intro-

duction of the sign results in a set of rules which do not bring
the user any closer to solving his problems. Statements, such
as: ‘all zero results are positive’ and ‘plus zero equals minus
zero", are required to prevent a behavior contrary to mathe-
matical convention. One of the advantages of 2Z-complement
notation is that only one zero is represented.

A comparison of the IBM 2938 {Ruggiero) and the Iliac IV
{(Barnes) shows how the implementation can enter the archi-
tecture. Both machines allow array operations.

The 2938 takes the architecture as a starting point. The Illiac,
being a more experimental machine, starts with the imple-
mentation.

The 2938 operations are practically independent of operand
size. In the Illiac, however, the user must fit his problem to
the machine, a procedure which resembles the mythological
Procrustean Bed.

Parsimony

Where orthogonality may lead to proliferation, propriety
leads to parsimony. Parsimony expresses the thought that a
function which is not germane to the system should not be
present.

There appears to be a phase in each technological develop-
ment cycle where there is a tendency to add bells and whistles.
This is often the result of passing design decisions to the user,
by giving him all the options. This is typically the case when
the art is developed to the point where the options can be
provided, but maturity is still lacking in evaluating their use.

The Stretch computer, for example, introduced the concept
of variable byte size, which permitted characters of 1 through
8 bits to participate in arithmetic and logical operations. In
Systern/360 this concept was dropped again. 1t generalised
a problem, rather than providing a solution. The introduction
of such a concept carries with it a series of problems which
are strange to the user. For instance: how should bytes of
unegual size be matched ? If extended, what bits are supplied?
if truncated, is the deletion of significant bits signalled?

Parsimony also says that a function should not be provided
in two competing ways. Otherwise redundant knowledge and
an unnecessary choice are forced upon the user. Since basi-
cally all computer operations but one are redundant {van der
Poel), the introduction of more operations is only justified by
such efficiency of expression that no competition exists. A
typical example are the floating point operations, which are
justified because they eliminate cumbersome scaling proce-
dures.

Transparency

Another concept which results from propriety is transparency.
Just as the glass in a window, which preserves the comfort
of a home. should not alter the view throught the window,
so the system functions introduced by an implementation
should not impose themselves upon the user.

In dialing long distance, the user should not have to choose
the channels and exchanges through which his call is for-
warded. All he needs to specify is the number of the person
he wants to call. The fact, that only a limited number of calis
can be made simultaneously, should equally be hidden
from him.

A computer example is the desire for visual fidelity on a
terminal. What is keyed in by the user should be placed as
such in storage and reproduced again unaltered.

Elektronische Rechenaniagen

1972 Heft 4 157




Virtual system

When the actual limitations of the implementation are hidden
in & transparent fashion, such that only the functions which
are proper to the purposes of the user are present, a sirtual
system results. The automatic gear shift is such a virtual
system. It presents to the driver a car without gear shift, even
though the engine siill requires this function. Because the
virtual system pretends what is not actually true, it usually
must admit its real limitation under siress, Thus dialing an
area code can immediately result in a busy signal, even though
the subscriber to be reached is capable of accepting the call.
This reveals that the dialing system makes use of inter-
mediate facilities, which may become overloaded.

In computers also a virtual system is desirable, but vulnerable.
Forinstance, the architecture may specify a character-oriented
storage, while actually storage is organised in multiples of
characters. If this fact is not properly hidden by the logical
designer, the programmer will use it in optimising his pro-
grams'and thus reintroduce it into the architecture. A virtual
system therefore carries with it the danger of spoiling the
architecture by introducing extraneous implementation de-
tails.

A prominent example of a virtual function is virtual storage.
Here the implementation pretends to offer a large amount of
information on ‘one level’ {Kilburn), which actually resides
on devices with different accessability —if space is allocated
at all.

There are many minor examples of virtual operation. In fact,
the inner structure of the computer has come to resemble the
architecture less and less. With faster and cheaper compo-
nents, the implementer can more and more effectively hide
the extraneous implementation details, making the computer
into an almost totally virtual machine. This also explains
why most innovations in circuits and storage have only a
very indirect effect upon the architecture {Blaauw, 1970).

Compatibility

Transparency concerns the removal from the user’s concern
of salient implementation characteristics. As a rule 2 trans-
parent architecture is suitable 1o a wide range of implementa-
tions. Implementations which have the same architecture
are called comparible. Thus an upright and a grand piano are
compatible, since they have the same keyboard and pedals.

Computer compatibility is restricted to the architectural de-
finition. Speed is therefore deliberately excluded from con-
sideration. Programs which should run on any implementa-
tion may not be implicitly time-dependent. They also should
be independent of variation allowed within the architecture,
such as storage size, or system configuration.

Transparency and compatibility both should be exact. Half
compatibility or transparency is really no compatibility or
transparency at all. In this respect computers are required to
be perfect—a very unusual requirement. It can only be met
by stating clearly within which boundaries these attributes
apply. The restrictions upon compatibility stated above give
an indication of such boundaries,

Compatibility has been a major factor in establishing the
need for an explicit computer architecture. With early com-
puters the manner in which they worked —if they worked at
all—was the architecture. Hence, there was no need to dis-
tinguish architecture and implementation. It subsequently
proved that an architecture, however ad hoc, had a remark-
ably long life through successor machines. Therefore, as new

188 1972 Heft 4 Elektronische Rechenanlagen

machines were planned, their design had to fit & wide range
of performance and size. Since programming investment also
became a major factor, the need for a common architecture
was clear.

Multiple compatible implementations also made it possible
to enforce the architecture. With a single implementation,
the paper words of the architecture are hard to uphold
against deviations in a ‘hard’-ware impiementation. Time
and money are all on the side of the latter. With multiple
implementations, on the other hand. it is clear to the im-
plementer that he can only deviate at his own risk. This ex-
plains why in System/360 the CPU architecture, which was
implemented by five teams, was more tightly controlled than
the peripheral device architecture, which often had only a
single implementation.

Generality

Charles Bobbages® first computer was the special purpose
Difference Engine (ca. 1832). During the development of this
machine he realised, that by generalizing his design, its ap-
plication would be much wider. This consideration resulted
in his second machine: the Analytical Engine (ca. 1867).
Thus, generality from the start has proven to be a powerful
architectural principle. In fact, the success of the modern
computer has been mostly due to its general purpose char-
acter,

Generality is the ability to use a funetion for many purposes.
It expresses the professional humility of the designer, that
users will be inventive beyond his imagination and needs
may change other than in his expectation. Two major ways
in which generality can be achieved are open-endedness and
completeness.

Open-endedness

As a safeguard towards future developments the designer is
wise to leave spares in the spaces his design has created. Thus
spare format bits and codes should be provided. One of the
reasons for a departure from the successful IBM 701-709411
line (1953~ 1964) was the Jack of address space provided in
its instruction format. In System/360 this space was ex-
panded a hundredfold, with €asy extension by another factor
of 256. Within a few years, serious demands for this added
space were made in the model 67 (1966).

Open-endedness aiso requires that the user have full access
to the information with which he must work. Hence, there
should be no configurations which have an irrepressible de-
limiting or control function. For instance, the IBM 705
(1955) used a group mark {code 11 111) to stop data transfer
in a write operation. As a result arbitrary codes, or binary
information, could not be handled by the machine.

This requirement leads to separation of data and control in-
formation, which in turn affects an entire computer design.
The formats of the Burroughs 5000 (1962) family are a pro-
minent example of mixing data and control information.
Such a design implies a joint hardware-software development
and requires a high level of assurance in both areas. In this
case this challenge was met deliberately, and with success.
However, too often the opportunity to safeguard a design by
generality is passed by through sloppiness.

In short, the designer should not limit the use of a general
function by his own notions about its use, until they are
widely accepted as the superior way of doing things. In the
absence of knowledge freedom should be provided.




—

{ompieteness

Generality can at times be met by completeness. Not just a
selection of functions, but all funciions of a given class are
provided. However, this may introduce the problem of pro-
liferation. The full range of choices may result in an abun-
dance of control and excess of format space. Thus, a
variable field length instruction in the Streich computer re-
guired 64 bits, even though the byte address was only 21 bits
song. 33 Bits were required by bit-addressing, field length,
sign and radix control. indexing, index mode control, byte
size selection and a relative shift, all of which applied to all
operations of this class.

Proliferation may be prevented by localising the options
through decomposition. Instead of multiplying all cases by
the given set of options, only one basic function may be so
expanded. The screwdriver set, which includes several handles
and a variety of bits which can fit in each of these handles, is
such a solution. It requires far fewer parts than a full set of
complete screwdrivers.

in contrast to Stretch, in System/360 control of operand sign
was delegated to the ‘load” operations. Thus only one oper-
ation was expanded fourfold, instead of so expanding all
arithmetic operations. Similary, indirect addressing was pro-
vided by loading an index, instead of including this option
with each address. These decisions also improved the effi-
ciency of expression.

Conclusion

The architecture of a system creates a world in which other
people in turn can be creative. Thus Sreinway and his pre-
decessors introduced a world which made the compositions
of Chopin possible, which in turn allowed pianists like Rubin-
stein 10 be creatively active. In the world created by the com-
puter architect, programmers and implementers must be able
to work creatively. If the architecture is well designed, there
will be the freedom to do so.

The principles which lead to a good design are not peculiar
to computers, as has been illusirated by the examples drawn
from other fields of engineering. In fact, an even wider scope
could have been taken, since the principle of consistency also
applies to other areas of creative endeavor, as illustrated by
the laws of drama concerning unity of time, place and person,
and by Ockham’s famous razor.

Although the principles discussed are not mathematically
defined as such, they nevertheless have sufficient precision 1o
be used and to identify their consequences. Violating them
may result in 2 minor nuisance, or in a major expenditure in
time and cost, even involving redesign. On the other hand,
the adherence to good design principles results in equipment
which s attractive 10 learn and to use, and which can be build
and operated effectively.

Acknowledgements

The thoughts expressed in this paper have resulted from
many discussions with colleagues at the Technische Hoge-
school Twente and at the IBM Development Laboratories.
Of these I am most indebted to Dr. F. P. Brooks for his con-
tributions in substance and wording.

Literature

Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr., Architecture of
the IBM System/360. IBM Journal of Research and Development,
vol. 8, no. 2, pp. 87— 101, April 1964.

Barnes, G. H., R. M. Brown, M. Kats, D. J. Kuck, D. L. Slotnick, and
R. A. Stokes, The ILLIAC IV Computer. IEEE Transactions on
Computers, vol. 17, no. 8, pp. 746 — 757 (1968).

Blaauw, G. A., Hardware Requirements for the Fourth Generation, in:
Fourth Generation Computers: User Requirements and Transition,
ed. F. Gruenberger. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1970,

Blaauw, G. A., The use of APL in computer design, in: MC-25 Infor-
matica Symposium, Mathematical Centre Tracts 37. Mathematisch
Centrum, Amsierdam, 1971.

Buchholz, W., ed., Planning a Computer System. McGraw-Hill, New
York, N. Y., 1962.

Falkhoff, 4. D., K. E. fverson, and E. H. Sussenguth, A formal de-
scription of System/360. IBM Systems Journal, vol. 3, no. 3,
pp. 198261, 1964,

Iverson, K. E., A Programming Language. Wiley, New York, N. Y.,
1962.

Kilburn, T.. R. B. Payne. M. J. Lanigan, and F. H. Summer, One level
storage system. IRE Transactions on Electronic Computers, vol. 11,
no. 2, pp. 223235, (1962).

Ruggiero, J. £. and D. A. Corryell, An auxiliary processing system for

array calculations. IBM Systems Journal, vol. 8, no. 2, pp. 118—135
(1969).

Van der Poel, W. L., The logical principles of some simple computers.
Amsterdam (1956).

Elektronische Rechenanlagen 1972 Heft 4 158




